

This document is issued within the frame and for the purpose of the GRIDS project. This project has received funding from the European
Union’s Innovation and Networks Executive Agency – Connecting Europe Facility (CEF) under Grant Agreement No
INEA/CEF/ICT/A2019/1926018; Action nº 2019-EU-IA-0044. The opinions expressed and arguments employed herein do not necessarily
reflect the official views of the European Commission.
This document and its content are the property of the GRIDS Consortium. All rights relevant to this document are determined by the
applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents
are not to be used or treated in any manner inconsistent with the rights or interests of the GRIDS Consortium or the Partners detriment
and are not to be disclosed externally without prior written consent from the GRIDS Partners.
Each GRIDS Partner may use this document in conformity with the GRIDS Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;
CI: Classified EU RESTRICTED, EU CONFIDENTIAL, Int = Internal Working Document, information as referred to in Commission Decision
2001/844/EC.

increasinG tRust with eId for Developing buSiness

D3.1 Business Attribute Aggregation (BAA)

Keywords

Identity, Assurance, Trust, Framework, eIDAS, KYC, KYB, Claims, Business Registers, Banks, Relying
Party, Data Consumer, Data Provider, OpenID Connect Provider, Legal Identity

Document Identification

Status Final Due Date 31/05/2021

Version 1.0 Submission Date 01/06/2021

Related Activity Act 3 Document Reference D3.1

Related
Deliverable(s)

D2.1, D3.2, D3.3 Dissemination Level (*) PU

Lead Participant ATOS Lead Author Ross Little

Contributors UAEGEAN

KOMPANY
ADACOM
INFOCERT

Reviewers Peter Bainbridge-Clayton
(KOMPANY)

Pasquale Minervini,
(INFOCER)

Document name: D3.1 BAA Development report Page: 2 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Nikos Triantafyllou UAEGEAN

Peter Bainbridge-Clayton KOMPANY

Pasquale Minervini INFOCERT

Stamoulis Zamanis ADACOM

Miryam Villegas Jimenez ATOS

Raquel Cortés Carreras ATOS

Juan Carlos Perez Baun ATOS

Document History

Version Date Change editors Changes

0.1 13/05/2021 Ross Little (ATOS) Initial version

0.2 19/05/2021 Ross Little (ATOS) Updated after internal review and ready for
review by partners.

0.3 27/05/2021 Ross Little (ATOS) Updated after peer review.

1.0 31/05/2021 Juan Alonso, Juan
Carlos Perez (ATOS)

Review of final version before submission

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Ross Little (ATOS) 19/05/2021

Peer reviewers Stamoulis Zamanis (ADACOM)

Peter Bainbridge-Clayton (KOMPANY)

27/05/2021

Quality Manager Juan Alonso (Atos) 31/05/2021

Document name: D3.1 BAA Development report Page: 3 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ... 2

Table of Contents ... 3

List of Tables... 5

List of Figures ... 6

List of Acronyms ... 7

Executive Summary .. 8

1 Introduction.. 9

1.1 Purpose of the document .. 9

1.2 Relation to other project work ... 9

1.3 Structure of the document ... 9

2 High Level Identity Assurance Overview... 10

2.1 BAA External Interfaces .. 12

2.1.1 OpenID Configuration Endpoint .. 12

2.1.2 Client Registration Endpoint ... 12

2.1.3 Authorization Endpoint ... 12

2.1.4 Token Endpoint ... 12

2.1.5 Userinfo Endpoint ... 12

2.1.6 Client Introspection Endpoint ... 12

3 BAA Low-level design specification .. 13

3.1 Logical Architecture Overview To be updated ... 13

3.2 Modules Specification .. 13

3.2.1 Data Consumer Connector (DCC) .. 14

3.2.2 Identity Provider Connector (IdPC) ... 26

3.2.3 Data Provider Connector (DPC) ... 27

3.2.4 Attribute Collection Manager (ACM) .. 28

3.2.5 Configuration Manager (CM) .. 32

3.2.6 Session Manager ... 34

3.3 Sequence diagrams .. 36

3.3.1 BAA Authentication and Verified KYC/KYB Claims request ... 36

3.3.2 BAA KYC Source Distributed Claims Flow .. 38

3.4 BAA Component Diagram .. 42

3.5 Data Model .. 43

3.5.1 OIDC IDA 1.0 ... 43

Document name: D3.1 BAA Development report Page: 4 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.5.2 GRIDS .. 43

3.6 Internal interfaces .. 45

3.7 Security Guidelines... 45

3.8 Microservices chassis framework ... 46

4 Development Modules, Process and Tools ... 47

4.1 BAA Microservice modules .. 47

4.2 Development tools ... 47

4.3 Development process .. 48

4.3.1 Contribution Guidelines .. 48

4.3.2 Basic steps... 48

4.3.3 Java package naming .. 49

4.4 CI Flow.. 50

4.4.1 GitLab Project ... 50

4.4.2 Continuous Integration ... 52

4.4.3 The .gitlab-ci.yml file ... 53

4.4.4 Nexus registry ... 55

4.4.5 SonarQube .. 56

4.5 Deployment ... 57

5 Conclusions .. 58

6 References .. 59

7 Annexes .. 61

7.1 Local BAA Metadata (CM) .. 61

7.2 External BAA Metadata (CM) ... 61

7.3 Trusted BAA List (CM) .. 61

7.4 Trusted DP List (CM)... 61

7.5 EIDAS Metadata (CM) .. 62

7.6 GRIDS Metadata (CM) .. 62

7.7 Basic BAA Metadata (DCC) ... 62

7.8 BAA OP Metadata well-known configuration (DCC) ... 62

7.9 DP OIDC IDA Metadata (DP) ... 62

7.10 BAA YAML ... 62

7.11 eIDAS Natural and Legal Claims .. 63

7.12 JWKS ... 63

Document name: D3.1 BAA Development report Page: 5 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 OIDC / GRIDS Claims to eIDAS Attributes mapping .. 29
Table 2 BAA microservice module development .. 47

Document name: D3.1 BAA Development report Page: 6 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1 Distributed Claims approach ___ 11
Figure 2 BAA Logical modular microservices architecture __ 13
Figure 3 BAA Authentication and Verified KYC/KYB Claims request __________________________________ 36
Figure 4 BAA KYC Source Distributed Claims Flow __ 38
Figure 5 BAA Component Diagram __ 42
Figure 6: GRIDS GitLab Group __ 48
Figure 7: Set the default branch __ 50
Figure 8: Set the protected branches __ 51
Figure 9: Approving a merge request __ 51
Figure 10: Repository Graph ___ 52
Figure 11: GitLab runner for the CI playground repository ___ 53
Figure 12: CI playground CI/CD variables ___ 53
Figure 13: CI Lint utility ___ 54
Figure 14: CI status __ 54
Figure 15: CI playground images stored in Nexus __ 55
Figure 16: Sonar analysis for CI playground project ___ 56

Document name: D3.1 BAA Development report Page: 7 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

AML Anti Money Laundering

CI Continuous Integration

CD Continuous Development

EC European Commission

D3.1 Deliverable number 1 belonging to Activity 3

DC Data Consumer

DoA Description of the Action

DP Data Provider

DS Data Subject

CDD Customer due diligence

eIDAS
Regulation (EU) No. 910/2014 on electronic identification and trust services for
electronic transactions in the internal market

FIs Financial Institutions

IDA Identity Assurance

IdP Identity Provider

JSON JavaScript Object Notation

JWKS JSON Web Key Set

KYB Know Your Business

KYC Know Your Customer

LEI Legal Entity Identifier

LOU Local Unit Operator

OIDC OpenID Connect

OIDC IDA IDA OpenID Connect for IDentity Assurance

OP OpenID Connect Provider

OS Open Source

RP Relying Party

SAML Security Assertion Markup Language

VM Virtual Machine

WG Working Group

Document name: D3.1 BAA Development report Page: 8 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The deliverable is a report covering the implementation of the Business Attribute Aggregator (BAA)
module so that it satisfies the high-level design as carried out in Task 2.2. This report provides a recap
of the high-level design before fully specifying the BAAs low-level design and interwork of each module
is fully specified for the microservices developed and deployed for the GRIDS Project.

The BAA implementation follows the OIDC IDA 1.0 specification [7], and as a next release for the
specification is still being actively worked on by the OIDC IDA WG, members of GRIDS have attended
the WG teleconferences and contributed to new updates to the specification based on our needs and
experiences.

The CI/CD process executed for the project is also elaborated on which facilitated partner code to be
uploaded to the Atos GitLab and generate docker containers and upload on Nexus automatically.

The result is a report that accurately reflects the developed BAA software modules and the design
process.

Document name: D3.1 BAA Development report Page: 9 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

The purpose of this document is to detail the GRIDS Business Attribute Aggregator (BAA)
implementation design and development process. The BAA enables the authentication of natural and
legal persons over eIDAS and uses this assured identity data in the further collection of Know Your
Customer (KYC) & Know Your Business (KYB) claims from Data Providers, that are connected over the
GRIDS BAA in a Distributed Claims Approach as specified by the OIDC IDA 1.0 specification [7].

1.2 Relation to other project work

This deliverable covers the low-level design and implementation of the GRIDS BAA as per the Task 3.1
of the DOA and as such follows the high-level design specified in Task 2.2.

It supports the OIDC Distributed Claims Approach for querying Data Providers for KYC/KYB claims as
per the interface realised in Task 3.2.

It interfaces with the eIDAS network via the SPHUB as is implemented in Task 3.3.

1.3 Structure of the document

This document is structured in 3 major chapters

• Chapter 2 gives an overview of the high-level design elaborated in Task 2.2

• Chapter 3 specifies the low-level design of the BAA

• Chapter 4 describes the CI/CD process for GRIDS development

Document name: D3.1 BAA Development report Page: 10 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2 High Level Identity Assurance Overview

The implementation of the BAA is based on OpenID Connect for Identity Assurance 1.0 (aka “OIDC IDA
1.0”), Ref[3], where it is acting as an OpenID Connect Provider (OP) . It supports authentication of
both natural and legal identities over eIDAS and the querying of Data Providers for KYC/KYB claims
with the authenticated identity of the Data Subject. The querying of the Data Provider for KYC/KYB
claims is supported in a distributed claims approach, as specified in the OIDC Core specification [6].

The following Figure 1 referenced from the high-level design [14] demonstrates the high level
interwork following the OIDC authorisation and distributed claims flow.

Document name: D3.1 BAA Development report Page: 11 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 1 Distributed Claims approach

Document name: D3.1 BAA Development report Page: 12 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.1 BAA External Interfaces

The BAA supports the following external interfaces:

2.1.1 OpenID Configuration Endpoint

The configuration of any GRIDS Endpoint: BAA or Data Provider can be retrieved via OpenID
Configuration published by the respective Issuer. OpenID Providers supporting Discovery MUST make
a JSON document available at the path formed by concatenating the string /well-known/openid-
configuration to the Issuer [4].

2.1.2 Client Registration Endpoint

The Client Registration Endpoint is an OAuth 2.0 [15] Protected Resource through which a new client
registration can be requested. The OP MAY require an initial access token that is provisioned out-of-
band (in a manner that is out of scope for this specification) to restrict registration requests to only
authorized Clients or developers [5].

2.1.3 Authorization Endpoint

The Authorisation Endpoint supports an OAuth 2.0 Authorization Request that requests that the End-
User be authenticated by the Authorization Server [6].

2.1.4 Token Endpoint

To obtain an Access token, an ID Token, and optionally a Refresh Token, the RP (Client) sends a Token
Request to the Token Endpoint to obtain a Token Response, when using the Authorization Code Flow
[6].

2.1.5 Userinfo Endpoint

The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns Claims about the authenticated
End-User. To obtain the requested Claims about the End-User, the Client makes a request to the
UserInfo Endpoint using an Access token obtained through OpenID Connect Authentication [6].

In this implementation the Userinfo Endpoint will return the userinfo response with distributed claim
requests towards remote Userinfo Endpoints supported by GRIDS Data Providers to request Identity
Assured claims as specified in the OIDC IDA 1.0 specification [7].

2.1.6 Client Introspection Endpoint

The client introspection endpoint is an OAuth 2.0 endpoint, used by the Data Providers, that queries a
client introspection token and returns a JSON document representing the metadata for the Data
Consumer client [8].

The client introspection endpoint and client introspection token are made available to the
Data Provider (DP) in the distributed claims Userinfo request.

Document name: D3.1 BAA Development report Page: 13 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3 BAA Low-level design specification

The Business Attribute Aggregator is based on the existing ESMO microservices platform and inherits
its architecture. GRIDS will add new modules and functionalities on the core microservice architecture
design.

3.1 Logical Architecture Overview To be updated

Figure 2 BAA Logical modular microservices architecture

3.2 Modules Specification

This section specifies the GRIDS components and details their low-level implementation details and
also includes implementation notes that will serve as guides for the development of the modules.

Document name: D3.1 BAA Development report Page: 14 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.1 Data Consumer Connector (DCC)

The Data Consumer Connector microservice module implements the OIDC authorization interface to
the Data Consumer (DC), which is also known as the Relying Party (RP) in claims-based applications.

3.2.1.1 OIDC Provider Metadata with IDA Trust framework

The DCC will support a configuration end point as described in OIDC Discovery 1.0 provider config
information [16]. This will make available the OIDC end points and metadata needed for Data
Consumer clients communicating with the BAA.

The BAA acts as an OP and will follow the OIDC IDA 1.0 specification to advertise the KYC/KYB Claims
and trust framework it supports over distributed claim sources in the GRIDS network.

The DCC will offer a Configuration Endpoint, where its OP Metadata is published based on current
compilation of supported claims and trust frameworks for the totality of the DPs connected over the
GRIDS Network and the locally connected IdP(s).

Implementation note:

Accessing the OP Metadata is described here.

OP Metadata to support is described here.

OIDC IDA v1.0 specification OP Metadata is described here.

The latest specification of OIDC IDA being worked on is available here.

The following non-normative example of OP well-known configuration metadata from the OIDC IDA
spec [7] shows how the BAA will advertise all the verified claims with trust framework supported over
the GRIDS BAA.

{

...

 "verified_claims_supported":true,

 "trust_frameworks_supported":[

 "nist_800_63A_ial_2",

 "nist_800_63A_ial_3"

],

 "evidence_supported":[

 "id_document",

 "utility_bill",

 "qes"

],

 "id_documents_supported":[

 "idcard",

 "passport",

 "driving_permit"

],

 "id_documents_verification_methods_supported":[

 "pipp",

 "sripp",

 "eid"

],

 "claims_in_verified_claims_supported":[

 "given_name",

 "family_name",

 "birthdate",

https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html#name-op-metadata
https://bitbucket.org/openid/ekyc-ida/downloads/

Document name: D3.1 BAA Development report Page: 15 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "place_of_birth",

 "nationalities",

 "address"

],

...

}

The basic well-known configuration data for the BAA is created on the DCC module, as per the example
in section 7.8. Additionally, this will be complemented with:

• the OP IDA verified claims metadata: This will be supported by the OP Metadata being
available on the CM (see section 3.2.5.1) and includes:

o all verified KYC/KYB claims supported by the DPs over the GRIDS BAA.
o all verified identity claims supported by IdPs on the BAA.

• the list of trusted BAA authorization servers in the whole GRIDS network that can generate
distributed claims towards the DPs and that DPs need to validate them as trusted issuers and
verify their signed requests. It is included in OP Metadata claim as:
“verified_claims_trusted_issuers” and is obtained from the CM query on the GRIDS IDA
metadata. This will support a future scenario where there can be multiple BAAs in a GRIDS
network.

Note: The DCC will obtain all the above GRIDS IDA metadata by calling the Configuration Manager
module for the GRIDS using: /metadata/externalEntities/{collectionId} where

collectionId is “GRIDS”. See section 3.2.5.5 for more information.

The well-known configuration OP Metadata is periodically generated (configurable) so to publish the
DP KYC/KYB verified claims that are available over the BAA.

An example of the well-known configuration OP Metadata publicly available on the BAA DCC module
is given in section 7.8.

3.2.1.2 JSON Web Key Set (JWKS)

The DCC will create a JSON Web Key Set (JWKS) specific for the BAA that it resides on.

3.2.1.3 Data Consumer Registration

The DC Connector will handle all Data Consumer registrations to the BAA node. It will provide this on
a managed basis, so that the DC client application first passes an approval process before being issued
with an Access token to get authorized access to the GRIDS BAA registration endpoint, and be
dynamically issued with a Client ID and Client Secret.

Implementation note:

The BAA OpenID Provider Metadata will be obtained at the discovery endpoint for the BAA and will provide the client
registration endpoint, userinfo endpoint introspection endpoint, claims supported etc.

The link found here is a useful reference.

The IDA Specification also will add the IDA metadata to be supported by the BAA. The following links here and here are
useful references.

https://ldapwiki.com/wiki/Openid-configuration
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html#name-op-metadata
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfigurationRequest

Document name: D3.1 BAA Development report Page: 16 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

In order for a client to use the BAA they need to register. The DCC module of the BAA will implement
OpenID Connect Dynamic Client Registration, which extends OAuth 2.0 Dynamic Client Registration
Protocol and OAuth 2.0 Dynamic Client Registration Management Protocol1.

Specifically, GRIDS BAA aims to support two modes of registration:

• admin registration (console or REST endpoints) and

• client self-registration through the Client Registration Service of the BAA OIDC module

The Client Registration Service provides built-in support for Client Representations, OpenID Connect
Client Meta Data and SAML Entity Descriptors. To invoke the Client Registration Services you usually
need a token. The token can be a bearer token, an initial access token or a registration access token.

Bearer-Token:

The bearer token can be issued on behalf of a user or a Service Account [19].

Initial Access token:

The recommended approach to registering new clients is by using initial access tokens. An initial access
token can only be used to create clients and has a configurable expiration as well as a configurable
limit on how many clients can be created. An initial access token can be created through the admin
console [19].

Registration Access token:

When a new client is created through the Client Registration Service the response will include a
registration access token. The registration access token provides access to retrieve the client
configuration later, but also to update or delete the client. The registration access token is included
with the request in the same way as a bearer token or initial access token. Registration access tokens
are only valid once, when it’s used the response will include a new token [19].

Implementation note:

“Upon OAuth 2.0 Client Registration the OAuth Client is assigned a Client_id and a Client Secret (password) by the
Authorization Server.The Client_id and Client Secret is unique to the OAuth Client on that Authorization Server. Whenever
the OAuth Client requests access to resources stored on that same Resource Server, the OAuth Client needs to Authenticate
itself by sending the Client ID and the Client Secret to the Authorization Server.” Reference [18].

Note that a client can use the Registration Access token it received during registration to be allowed to read its own
confidential client metadata. See following reference for Registration Access token here.

Upon successful registration the Data Consumer Metadata is retrieved from the clients well known configuration endpoint
and stored in a list of DC metadata objects in the DCC. This link is a useful reference.

3.2.1.4 Data Consumer Metadata

Some parameters of the Data Consumer client metadata will be made available to DPC module to
support a Data Provider Introspection query (see section 3.2.3.2) when a Data Consumer with a
registered client Id is making requests to a Data Provider.

To provide for this the DCC supports a getClientMetadata API with the following client metadata

claims returned:

• client_id

• client_name

• userinfo_signed_response_alg

• userinfo_encrypted_response_alg

• userinfo_encrypted_response_enc

1https://www.keycloak.org/docs/latest/securing_apps/#_client_registration

https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata.
https://www.keycloak.org/docs/latest/securing_apps/#_client_registration

Document name: D3.1 BAA Development report Page: 17 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

• jwks_uri

3.2.1.5 Authentication and KYC/KYB Claims Request

This provides an external interface that will interact with the Data Consumers / Relying Parties to
handle GRIDS eIDAS authentication and KYC/KYB Claims.

As of today, eIDAS legal person is only supported by one country in the EU (Netherlands2) and therefore
the more common flow of authenticating a natural person will be given as example in the flow that is
outlined in this section. In this scenario it is further needed for the client Data Consumer to provide
the Legal Person Identifier and/or Legal Name used to query the Data Provider KYB data.

Note:

If a legal person is authenticated this will follow the same flow and thus should also be supported in the same way, with
the only difference being that the legal claims will be requested over eIDAS instead of the natural claims.

The interface follows a standard OIDC Authorization Code flow, to request the eIDAS authentication
and KYC/KYB Claims. This flow is described in low-level detail below so to fully specify its
implementation in this module, and is further depicted in a sequence diagram with high level flow
description in section 3.3.

1. The DCC supports a front-channel https redirection from the Data Consumer to the BAAs
authorisation endpoint requesting identity assured authentication and KYC/KYB Claims. The
DC will send either an HTTP GET or POST request that includes the following required and
recommended parameters:

• scope: OpenID Connect requests must contain the openid scope value.
• response_type: Determines the authorization processing flow to be used. When using

the Authorization Code Flow, this value is code.
• client_id: Client identifier that is valid at the OpenID Connect Provider.
• redirect_uri: Redirection URI to which the response will be sent. This value must exactly

match one of the redirection URI values for the registered client at the OP.
• state: Opaque value used to maintain state between the request and the callback.
• claims: The Relying party uses this parameter, to request verified claims under

userinfo and id_token as shown in the implementation note below.
Additionally, in the case that the user is not able to authenticate against eIDAS as a legal
person (but as a natural person) the DC should provide at least one of the following
unverified claims for the Data Provider to be able to search the business claims:
• legal_person_identifier: Legal Person Identifier
• legal_name: Legal Name

Implementation note:

A non-normative example of the OIDC IDA authentication and KYC/KYB Claims request is given below in the form
of a JWT Token.

Note it should be in a JWT Token as opposed to a request format. See OIDC standard section 6 and also this
reference.

 {

2 https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=74091935

https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=74091935

Document name: D3.1 BAA Development report Page: 18 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "iss": "https://data_consumer.example.com",

 "aud": "https://BAA.example.com",

 "response_type": "code",

 "client_id": "s6BhdRkqt3",

 "redirect_uri": "https://data_consumer.example.oom/cb",

 "scope": "openid",

 "state": "af0ifjsldkj",

 "jti": "n-0S6_WzA2Mj",

 "max_age": 86400,

 "legal_person_identifier": "375714X",

 "legal_name": "Acme Corporation",

 "claims": {

 "userinfo": {

 "verified_claims": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "userinfo_endpoint": {

 "value":

"www.entiyid.com"

 },

 "evidence": [

 {

 "type": {

 "value":

"company_register"

 },

 "registry": {

 "organisation": {

 "essential": false,

 "purpose": "string"

 },

 "country": {

 "essential": true,

 "purpose": "string",

 "value": "ES"

 }

 },

 "time": {

 "max_age": 31000000,

 "essential": true,

 "purpose": "string"

 },

 "data": {

 "essential": true,

 "purpose": "string"

 },

 "extractURL": {

 "essential": true,

 "purpose": "string"

 },

 "document": {

 "SKU": {

 "value": "REX"

 },

 "option": {

 "essential": false,

 "purpose": "string"

 }

 }

 }

]

 },

Document name: D3.1 BAA Development report Page: 19 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "claims": {

 "family_name": null,

 "given_name": null,

 "birthdate": null,

 "legal_name": null,

 "legal_person_identifier": null,

 "lei": null,

 "vat_registration": null,

 "address": null,

 "tax_reference": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 },

 "id_token":

 "verified_claims": {

 "verification": {

 "trust_framework": {

 "value": "eidas"

 },

 },

 "claims": {

 "family_name": null,

 "given_name": null,

 "birthdate": null,

 "person_identifier": null,

 "place_of_birth": null,

 "address": null,

 "gender": null

 }

 }

 }

 }

2. The received id token request for eIDAS initiates the DCC to analyse the requested verified

claims and redirect the user to the ACM with an SP Request and then to the Identity Provider
Connector to proceed to authenticate the user over eIDAS (via the SPHUB) for the requested
eIDAS claims.

Implementation note:

A non-normative example of the SP Request is given below.

{

 "issuer" : "https://dataConsumer.example1.com",

 "type" : "Request",

 "recipient" : "https://baa.example1.com/dcc",

 "id" : "6c0f70a8-f32b-4535-b5f6-0d596c52813a",

 "attributes" : [

 {

 "friendlyName":"given_name,

 "isMandatory":true

 },

 {

 "friendlyName":"family_name",

Document name: D3.1 BAA Development report Page: 20 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "isMandatory":true

 },

 {

 "friendlyName":"person_identifier",

 "isMandatory":true

 },

 {

 "friendlyName":"birthdate",

 "isMandatory":true

 },

 {

 "name":"address",

 "isMandatory":false

 }

]

 },

 "spMetadata" : {

 "entityId" : "https://dataConsumer.example1.com",

 "defaultDisplayName" : "Data Consumer Example"

 "location" : "ES|Spain",

 "protocol" : "OIDC",

 "microservice" : ["DCCms001"],

 "endpoints" : [

 {

 "type":"AssertionConsumerService",

 "method":"HTTP-POST",

 "url":"https://dataConsumer.example1.com/acs.php"

 }

],

 "securityKeys" : [

 {

 "keyType":"RSAPublicKey",

 "usage":"signing",

 "key":"MDAACaFgw...xFgy="

 },

 {

 "keyType":"RSAPublicKey",

 "usage":"encryption",

 "key":"MDAACaFgw...xFgy="

 }

],

 "encryptResponses" : false,

 "supportedEncryptionAlg" : ["AES256","AES512"],

 "signResponses": true,

 "supportedSigningAlg" : ["RSA-SHA256"]

 }

}

3. Once authenticated the DCC will return the authorisation code to the user agent which the DC

will use to request the access token and id token.

Implementation note:

A non-normative example of the Authorisation Code HTTP response is given below.

HTTP/1.1 302 Found

Location:

https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

Document name: D3.1 BAA Development report Page: 21 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4. The DC will now make a request to the BAA token endpoint with the authorisation code which
will return the user’s identity token, and also a self-describing access token to the DC. It is the
DCC that will be responsible for building the identity token and access token.

Implementation note:

A non-normative example of the request to the token endpoint is given below.

POST /token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=http

s%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

A non-normative example of the response from the token endpoint is given below with a signed and base64Url
encoded Id Token and also access token. The access token will be similarly signed for self-describing access
tokens.

 HTTP/1.1 200 OK

 Content-Type: application/json

 Cache-Control: no-store

 Pragma: no-cache

 {

 "access_token": "SlAV32hkKG.yyuyyfyu6.vjh75WEdf",

 "token_type": "Bearer",

 "refresh_token": "8xLOxBtZp8",

 "expires_in": 3600,

 "id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc

 yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5

 NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ

 fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz

 AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q

 Jp6IcmD3HP99Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ

 NqeGpe-gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd

 QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS

 K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4

 XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg"

 }

5. Next the DC will query the BAAs Userinfo endpoint with the self-describing access token on
the BAA (on the DCC) for the requested KYC/KYB Claims (received in the previous step with the
eIDAS requested claims).

Implementation note:

A non-normative example of a signed and encrypted userinfo request with self-describing bearer access token
to the BAA userinfo endpoint is given below.

 GET /userinfo HTTP/1.1

 Host: server.example.com

Document name: D3.1 BAA Development report Page: 22 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Authorization: Bearer ZyJhbGciOicifQ.ewogImlI1wbGUwKiOiAiMjQ4.NzYxMDA

6. Upon reception of a back-channel UserInfo request with self-describing Access token to the

BAAs Token endpoint, the DCC decodes it and sends the “verified_claims” in the request
(userinfoReq) to the ACM module to obtain the distributed KYC DP Source endpoints and
corresponding self-describing access tokens, that will satisfy the KYC verified claims requested
by the DC.

Implementation note:

A non-normative example of the received Access token on the BAAs userinfo endpoint is given below.

{

"jti":"knm34l45jl45l",

"client_id":"https://DC.example.com",

"legal_person_identifier": "375714X",

"legal_name": "Acme Corporation",

"verified_claims": {

 "verification": {

 "trust_framework":"eidas",

 "identity_assurance_level": "substantial",

 "time": "2012-04-22T11:30Z"

 },

 "claims": {

 "given_name": "John",

 "family_name": "Smith",

 "birthdate": "1971-04-17",

 "person_identifier": "X731Z219A",

 "address": {

 "country": null,

 "street_address": "George Street 123",

 "locality": "Glasgow",

 "postal_code": "G1 1QD"

 }

 }

},

"claims": {

 "userinfo": {

 "verified_claims":

 {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "userinfo_endpoint": {

 "value": "www.entiyid.com"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "organisation": {

 "essential": false,

 "purpose": "string"

 },

 "country": {

 "essential": true,

Document name: D3.1 BAA Development report Page: 23 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "purpose": "string",

 "value": "ES"

 }

 },

 "time": {

 "max_age": 0,

 "essential": true,

 "purpose": "string"

 },

 "data": {

 "essential": true,

 "purpose": "string"

 },

 "extractURL": {

 "essential": true,

 "purpose": "string"

 },

 "document": {

 "SKU": {

 "value": "REX"

 },

 "option": {

 "essential": false,

 "purpose": "string"

 }

 }

 }]

 },

 "claims": {

 "family_name": null,

 "given_name": null,

 "birthdate": null,

 "legal_name": null,

 "legal_person_identifier": null,

 "lei": null,

 "vat_registration": null,

 "address": null,

 "tax_reference": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 }

}

}

7. The self-describing UserInfo access tokens are returned to the DCC as JWTs encoded in

Base64url by the ACM, and as per the security requirements in section 3.7 the DCC will both
sign and encrypt the received Base64url encoded access token, with the signing performed
first and then the encryption as recommended in section 11.2 of RFC7519. The encryption key
to use will also be provided in the userinfoReq response from the ACM.

Implementation note:

A non-normative example of the userinfoReq response from the ACM to the DCC is given is section 3.2.4.2.

Document name: D3.1 BAA Development report Page: 24 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

8. The DCC will then return the Userinfo response to the DC which will continue the query to the
DP KYC Sources directly for the user’s verified claims.

Implementation note:

A non-normative example of the userinfo access token received at the Data Provider is given below.

{

"iss":"https://BAA.1.example.com",

"sub":"X731Z219A",

"aud":"https://DP.anotherexample.com",

"scope":"openid",

"exp":"1311281970",

"iat":"1311280970",

"jti":"knm34l45jl45l",

"txn": "12347565411142194650508795011123",

"client_id":"https://DC.example.com",

"client_introspection_uri":"https://GRIDS.BAA1234.com/clients?id=https://DC

.example.com",

"client_introspection_access_token":"78y98yy98hyubui989y898y98yh8h8y7",

"legal_person_identifier": "375714X",

"legal_name": "Acme Corporation",

"verified_claims": {

 "verification": {

 "trust_framework":"eidas",

 "identity_assurance_level": "substantial",

 "time": "2012-04-22T11:30Z"

 },

 "claims": {

 "given_name": "John",

 "family_name": "Smith",

 "birthdate": "1971-04-17",

 "person_identifier": "X731Z219A",

 "address": {

 "country": null,

 "street_address": "George Street 123",

 "locality": "Glasgow",

 "postal_code": "G1 1QD"

 }

 }

 },

"claims": {

 "userinfo": {

 "verified_claims": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "organisation": {

 "essential": false,

 "purpose": "string"

 },

 "country": {

 "essential": true,

 "purpose": "string",

 "value": "ES"

 }

Document name: D3.1 BAA Development report Page: 25 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 },

 "time": {

 "max_age": 0,

 "essential": true,

 "purpose": "string"

 },

 "data": {

 "essential": true,

 "purpose": "string"

 },

 "extractURL": {

 "essential": true,

 "purpose": "string"

 },

 "document": {

 "SKU": {

 "value": "REX"

 },

 "option": {

 "essential": false,

 "purpose": "string"

 }

 }

 }

]

 },

 "claims": {

 "given_name": null,

 "family_name": null,

 "birthdate": null,

 "legal_name": null,

 "legal_person_identifier": null,

 "lei": null,

 "vat_registration": null,

 "address": null,

 "tax_reference": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 }

}

}

Additionally, it is possible that a DC has already authenticated a user and performed KYC queries to
distributed userinfo endpoints and proceeds to request to the BAA to do more KYC queries with
identity claims obtained from the initial DP KYC sources. In this case, the above process is repeated,
but the DC can specify the “prompt” parameter set to “none” in the new authentication and claims
request, and the user will not have to reauthenticate as long as the session is found on the BAA not
expired.

For more detailed information on the flow and the interaction with the DPC module please see section:
3.3.

Document name: D3.1 BAA Development report Page: 26 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Implementation note:

The existing ESMO GW is used for the basis of the GRIDS microservices platform and the OIDC SP microservice will be used
as the base code for the DCC. The spRequest will be used to handle the eIDAS authentication request with set of claims

included in the attributeSet object and the verification properties, as specified in the OIDC IDA 1.0 specification [7], will
be included inside the properties object.

Implementation note:

Distributed access token generated by the BAA will include not just the userinfo claims being requested to the DP but also
the identity claims with the values obtained by the eIDAS authentication. As the access token may therefore contain
personal identity claims, it should be considered to be encrypted as agreed with the DP it is destined for. This security
hardening feature will be considered in section 3.7.

This link is a useful reference.

Implementation note:

The self-describing distributed Access token is also used by the ID4me architecture, and GRIDS should learn from their
implementation.

Useful ID4ME references given here, here and here.

Implementation note:

This link is a useful reference for building an Id Token.

3.2.2 Identity Provider Connector (IdPC)

3.2.2.1 Registration

The IdPC will manually configure the eIDAS metadata manually in the Configuration Manager. See a
reference example of eIDAS Metadata in section 7.5.

3.2.2.2 Authentication

The IdPC provides an external interface that will interact with sources of authentication. BAA
deployments will connect identity providers as required for each deployment e.g. eIDAS, national IdPs
etc. As the IdPs require the user to respond to security challenges, they will all be user-centred and
front-channel.

The IdP Connector module also implements a generic internal interface to the Session Manager and
Attribute Collection Manager modules respectively for receiving Authentication requests and
returning responses to the corresponding modules of the BAA.

3.2.2.3 IdPC Events

When an authentication is attempted it is reported the success or failure of the event and capturing
non personal data such as success or fail and country authenticated.

The IdPC will forward the event to the platforms Centralised Event Logging & Reporting as described
in the high-level design.

https://darutk.medium.com/oauth-access-token-implementation-30c2e8b90ff0
https://id4me.org/files/ID4me_Technical_Overview_v1.3.pdf
https://gitlab.com/ID4me/documentation/blob/master/id4ME%20Technical%20Specification.adoc
https://gitlab.com/ID4me/identity-agent-prototype
https://darutk.medium.com/understanding-id-token-5f83f50fa02e

Document name: D3.1 BAA Development report Page: 27 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.3 Data Provider Connector (DPC)

3.2.3.1 Registration

DPs apply to register out of band and supply a configuration end point to a GRIDS BAA operator to
become part of the GRIDS Network. This process is handled in the configuration Manager described in
section 3.2.5.1.

Any DPC instance will be able to support any Data Provider registered with the BAA.

The Data Provider will in turn query the BAAs well known OIDC configuration endpoint to obtain its list
of trusted BAA issuers (verified_claims_trusted_issuers) in the GRIDs network, so to be able to validate
Userinfo requests issued by any of the entities in the trusted entity list. The DP will access the JWKS
URI of the trusted BAA issuer to verify the signature of the userinfo request it received.

3.2.3.2 Data Consumer Client Introspection

The BAA will support the DPC primarily to offer a Data Consumer client introspection end point where
the Data Provider can receive information on the Data Consumer so to confirm how it responds with
the requested KYC/KYB Claims, as per specified signing and encryption algorithms and access to the
DCs public key.

When the ACM previously created the distributed request for the Data Provider it made a
generateClientIntrospectionAccessToken request to the DPC module for a specific client Id &
transaction Id (TXN) so to restrict the access to the Data Consumer Client Introspection endpoint and
obtain an authorisation token to query it. The DPC saves the Introspection access token with the client
Id and TXN.

When the DP later queries the DC Client Introspection endpoint it will include the token in the body.
The token is burned upon use, after a configurable timer times-out.

Implementation note: A non-normative example of a DP query and response to the client introspection point with the
supplied URI is shown below.

POST /http://localhost:8080/dpc/dcIntrospection

Host: baa.example1-server.com

Authorization: Bearer vF9dft4qmT

Content-Type: application/json

"client_id": " f87674bhb ",

A non-normative response is given below:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "client_id": " f87674bhb ",

 "client_name": "Data Consumer XYZ",

 "userinfo_signed_response_alg": "RS256",

 "userinfo_encrypted_response_alg": "RSA-OAEP-256",

 "userinfo_encrypted_response_enc": "A128CBC-HS256",

 "jwks_url": "https://dataconsumer.xyz.com/jwks.json"

}

Note: The DPC obtains the DC Client claims from the DCC microservice using the
getClientMetadata API (see section 3.2.1.4). To obtain the DCC microservice routing information

Document name: D3.1 BAA Development report Page: 28 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

for this API, the DPC will contact the Configuration Manager to obtain the Data Consumer Connector
endpoint to which to forward this metadata request.

3.2.3.3 DP Events

When a DP queries the DC Client Introspection endpoint, the DPC generates an event reporting the DC
Client Introspection took place on the BAA for a specific Client Id and TXN Transaction Id. The TXN was
associated with the Introspection Access token when it was generated in the DPC.

The DPC will forward the event to the platforms Centralised Event Logging & Reporting which is
described in the high-level design.

3.2.4 Attribute Collection Manager (ACM)

3.2.4.1 Authentication + KYC Request handling

The role of the ACM module in conjunction with the Session Manager module is to provide a generic
internal interface to the DC, IdP, DP Connector modules. In this way, KYC Requests received from the
DC in any protocol are able to be redirected to the ACM over a generic interface for processing requests
from DCs and routing them to locally connected IdPs for requested authentication claims and to DPs
for KYC/KYB Claims.

As previously described in the high level design, the GRIDS BAA supports the OIDC IDA v1.0
specification [3] and is designed to support both aggregated and distributed claims approaches.
However, for this version of GRIDS BAA only the latter distributed approach is implemented.

As illustrated by the sequence diagram in section 3.3 the ACM supports authentication for the eIDAS
claims requested towards eIDAS and returning the authenticated claims with the required eIDAS trust
framework in the attribute set of the SP Response.

The KYC/KYB Claims requested are supported as per the OIDC IDA 1.0 specification through distributed
claims and described in the next section.

OpenID support standard claim names (see section 5.1 of the OIDC Core specification [6]) and some
of these are not directly equivalent to eIDAS claims supported in GRIDS and therefore the ACM must
do some mapping of the OpenID claim names to eIDAS friendly names as follows (Table 1):

OpenID / GRIDS eIDAS Format (Any Difference?)

given_name FirstName

string

family_name

FamilyName string

address CurrentAddress OpenID specification is found here.

It is needed to map between this and eIDAS
specification. An example of OpenID address is:

"address":{

 "locality":"Maxstadt",

 "postal_code":"12344",

 "country":"DE",

https://tools.ietf.org/html/rfc4627

Document name: D3.1 BAA Development report Page: 29 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "street_address":"Anderson Avenue 22"

}

The corresponding example in eIDAS is as follows:

“CurrentAddress”: ["LocatorDesignator",
"Thoroughfare", "PostName", "PostCode"]

“CurrentAddress”: ["22", " Anderson Avenue ", "
Maxstadt ", "12344"]

birthdate DateOfBirth string ISO 8601:2004 [ISO8601-2004] YYYY-MM-
DD

gender Gender string

lei LEI string

birth_family_name BirthName string

eIDAS gives both given and family names and so is
not compatible with OpenID

birth_given_name BirthName string

eIDAS gives both given and family names and so is
not compatible with OpenID

place_of_birth

PlaceOfBirth json object of type strings vs eIDAS string

eIDAS will only return place of birth e.g. “London”
and will add this as a string inside the
place_of_birth object.

person_identifier PersonIdentifier string

legal_person_identifier LegalPersonIdentifier string

legal_name LegalName string

sic SIC string

lei LEI string

vat_registration VATRegistration string

Table 1 OIDC / GRIDS Claims to eIDAS Attributes mapping

Implementation note:

eIDAS friendly names and format are specified here.

3.2.4.2 Userinfo Request handling

The ACM supports the end userinfo request to the DCC by receiving the forwarded request on
userinfoRequest API with a decoded self-describing Access token including the verified claims

being requested and the previously authenticated eIDAS attributes as well as the requested trust
framework.

https://openid.net/specs/openid-connect-core-1_0.html#ISO8601-2004
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.2%20Final.pdf

Document name: D3.1 BAA Development report Page: 30 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

If the actual DP KYC Source(s) have been specified in the trust framework3 (using the
"userinfo_endpoint" claim) it will be used to generate the self-describing Access tokens to each of
the requested distributed DP KYC Sources.

Otherwise, the ACM will return, the distributed claims for all DP KYC Sources that match or partially
match the requested claims as per the identity assurance being requested by the Data Consumer. This
is actually currently an issue4 raised by GRIDS and is being addressed by the OIDC IDA WG in the next
release of the specification. The example given in the implementation note below follows the proposed
update to the OIDC IDA 1.0 specification.

The DP metadata and verified claims that are supported for all DPs is obtained by querying the
configuration manager.

In the distributed claims approach, there is no direct communication between the DP module and the
ACM. Once the ACM module has prepared the distributed claims it will create the distributed self-
describing tokens with corresponding DP userinfo endpoints and return this information in the
response to the userinfo request and encoded in Base64url.

The ACM also interfaces with the Session Manager module so to access and update the session and
attribute information objects which are stored in the one secure Session Manager module.

Implementation note:

ACM will process the received verified claims in the UserInfo access token (see example in section 3.2.1.5) as per the IDA
Specification to identify the available DP KYC Sources that meeting the requested verification request.

The Standard specification of the IDA Verified Claims Schema used as reference is specified here.

A non-normative example of the response to the userinforeq API from the ACM to the DCC with distributed userinfo
claims is given below:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "_claim_names": {

 "verified_claims":

 {

 "src1": {

 "verified_claims_available": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "country": {

 "value": "ES"

 }

 },

3 Note to specify the actual KYC Sources inside a KYC request is a GRIDS specific extension of the OIDC IDA v1.0
Specification.
4 https://bitbucket.org/openid/ekyc-ida/issues/1242/look-ahead-for-provided-claims-in

https://openid.net/schemas/verified_claims_request-11.json
https://bitbucket.org/openid/ekyc-ida/issues/1242/look-ahead-for-provided-claims-in

Document name: D3.1 BAA Development report Page: 31 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "document": {

 "SKU": {

 "value": "REX"

 }

 }

 }

]

 },

 "claims": {

 "legal_name": null,

 "legal_person_identifier": null,

 "lei": null,

 "vat_registration": null,

 "address": null,

 "tax_reference": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 }

 },

 {

 "src2": {

 "verified_claims_available": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "country": {

 "value": "ES"

 }

 },

 "document": {

 "SKU": {

 "value": "REX"

 }

 }

 }

]

 },

 "claims": {

 "legal_name": null,

 "legal_person_identifier": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 },

 "_claim_sources": {

 "src1": {

 "endpoint": "https://data_provider1.example.com/claim_source",

 "access_token": "eyJhbGciOIkpXVCJ9.eyJpcI6ImU4MTQ4NjAzNDI0N.S04MjViLWMxMDhiOGI2",

 "Key": {

 "kty": "EC",

 "crv": "P-256",

 "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use": "enc",

 "kid": "1"

 }

 },

 "src2": {

Document name: D3.1 BAA Development report Page: 32 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "endpoint": "https://data_provider2.example2.com/claim_source",

 "access_token": "Btui76787pXVCJ9.zxc45ReyJpcI6zLTg5MzQtNDI0N.ViLWMxMDhi323",

 "Key": {

 "kty": "EC",

 "crv": "P-256",

 "x": "FFKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "GGtl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use": "enc",

 "kid": "1"

 }

 }

 }

}

Note: Access token is returned in userinforeq response to DCC in Base64url

3.2.4.3 ACM events

When the ACM creates and responds to DC KYC Requests with Access tokens, the DC client Id and DP
Userinfo endpoint and TXN are captured in the event for the requested claims.

The ACM will forward the event to the platforms Centralised Event Logging & Reporting.

3.2.5 Configuration Manager (CM)

This module will be responsible for the configuration and provisioning of all functional modules in the
BAA concerning e.g. configuration of optional features and provisioning of trusted entity metadata.

It is inherited from the ESMO project and is adapted with the description in the following sub-sections.

The CM holds configuration metadata on all external entities in the BAA and a complete list of what is
used in GRIDS is given below:

• EIDAS: eIDAS IDP Metadata populated in the local BAA for redirecting authentication
requests towards eIDAS.

• DP List: Array of DPs well known configuration endpoints that are provisioned for that local
BAA

• BAA (Local): BAA metadata containing all locally supported DP OP IDA Metadata as read
from the DPs well known configuration endpoints

• BAA List: Array of GRIDS BAA metadata endpoints to obtain the OP IDA metadata supported
by all remote BAAs in a GRIDS network (future support).

• BAA (External): Array of all supported remote BAA metadata containing all locally
supported DP OP IDA Metadata (future support)

• GRIDS: BAA metadata including all supported DP OP Metadata and list of trusted BAAs in
the GRIDS network

3.2.5.1 Trusted DP list

Data Providers that want to register their KYC Sources to the BAA Network need only supply their
configuration endpoint. No other trust relationship is needed as it is enough for a Data Provider to
request the BAA to read its metadata and include it in the BAA trusted KYC DPs.

Data Provider configuration endpoint url will be configured manually in the Configuration Manager
and is used to retrieve the DP Metadata and store it in the local BAA Metadata list.

An example of the Trusted DP list is given in section 7.4.

Document name: D3.1 BAA Development report Page: 33 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.5.2 Local BAA Metadata

The local BAA Metadata is periodically generated and primarily includes its entity identifier (issuer
address), a summary of all DP Metadata for all DPs configured to that BAA, the individual DPs and their
IDA supported and the time it was last successfully read.

The CM will periodically query the Data Provider well-known configuration end points that are
populated in the Trusted DP List as described in section 3.2.5.1 (set by deployment variable). This will
read the DP Metadata and obtain the KYC/KYB Claims and trust framework it supports along with the
encryption and signing algorithms the DP supports. An example of the well-known DP Metadata read
by the CM is given in section 7.9.

Additionally, the CM will query the JWKS uri and append the DP´s supported public keys to the DP
Metadata.

Implementation note:

The BAA will support encoding of the userinfo to the DP according to the first public encryption JWK read from the DP
JWKS and added to the DP metadata by the CM (with RSA and EC keys supported).

The reading of the JWKS will follow https://tools.ietf.org/html/rfc7517 with non-normative examples given below.

 {"keys":

 [

 {"kty":"EC",

 "crv":"P-256",

 "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use":"enc",

 "kid":"1"},

 {"kty":"RSA",

 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx

 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs

 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2

 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI

 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb

 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",

 "e":"AQAB",

 "alg":"RS256",

 "use":"enc",

 "kid":"2011-04-29"}

]

 }

This information obtained for each DP, is added to a local BAA metadata file containing the IDA
metadata for all DPs configured in that BAA along with the time it was successfully retrieved
(“successfullyQueried”) and the public encryption key of the DP.

Therefore, the list of local DPs and the KYC Source metadata, claims and trust framework they support
are able to be queried by the ACM module as part of the process in determining the DP to request
claims from using API /metadata/internal/{confId} with confId equal to “BAA”.

A reference example is given in section 7.1.

3.2.5.3 Trusted BAA List

GRIDS supports the possibility that there is a GRIDS Network of multiple BAAs, so that DPs registered
with one DP are also visible by all DPs in the GRIDS Network.

To support this, each BAA makes available the local BAA Metadata on a publicly available endpoint so
to be read by each BAA, as it is registered in the Trusted BAA List.

https://tools.ietf.org/html/rfc7517

Document name: D3.1 BAA Development report Page: 34 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

A reference example is given in section 7.3.

Note: This feature is desirable but not mandatory for the project.

3.2.5.4 External BAA Metadata

To obtain the OP IDA Metadata supported by all other BAAs in the GRIDS network the CM will query
the BAAs in the trusted BAA list as per section 3.2.5.3, and add each into an external BAA json file, as
per the example given in section 7.2 .

Therefore, the list of remote DPs and the KYC Source metadata, claims and trust framework they
support are able to be queried by the ACM module as part of the process in determining the DP to
request claims from using API /metadata/externalEntities/{collectionId} with

collectionId equal to “BAA”.

Note: This feature is desirable but not mandatory for the project.

3.2.5.5 GRIDS Metadata

The GRIDS Metadata file is dynamically generated in the CM from the local and remote BAA JSON files
to include:

- GRIDS entity identifier

- Summary of all DP Metadata for all DPs registered to all BAAs in the GRIDS Network

- Individual DPs and their IDA supported (locally and remotely) and the time it was last successfully
read.

The GRIDS Metadata will thus compile the trusted BAA nodes in the entire GRIDS network and all
verified claims supported over the GRIDS network as required by the OP Metadata.

Additionally, GRIDS extends the OIDC IDA specification by including in the OP Metadata the verified
claims (KYC/KYB Claims and Trust framework) supported by each DP KYC source available over GRIDS
and this is also included in the GRIDS Metadata file.

The GRIDS Metadata file is primarily read by the DCC module to add the additional OP Metadata to
include the verified claims available over the GRIDS Network.

An example of the GRIDS Metadata is given in section 7.6.

3.2.5.6 eIDAS Metadata

The eIDAS Metadata is configured on the CM so to be able to be read by the ACM to be able to identify
the sources that support requested eIDAS claims and can re-direct the authentication request to the
IdP module that supports it.

An example of the EIDAS Metadata is given in section 7.5.

3.2.5.7 CM Events

When a CM is making a metadata query to an entity such as another BAA or to a DP and it does not
receive a response an event is raised to the platforms Centralised Event Logging & Reporting.

3.2.6 Session Manager

This is inherited from ESMO without any changes.

This provides a generic internal interface to all modules in the BAA for caching the Authentication and
KYC Request information and returning a session token to the modules, which in turn can be used to
later access and manipulate the session data. The request information, metadata, and session state
are cached until its associated response is received, or a time out occurs. The associated response

Document name: D3.1 BAA Development report Page: 35 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

information is matched with the cached request and is also cached in the Session Manager module
until delivered to the requesting DC module, or a time out occurs.

Document name: D3.1 BAA Development report Page: 36 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3 Sequence diagrams

This section provides a sequence diagram and description demonstrating the OIDC Authorization and
Distributed Claims flow following the OIDC IDA 1.0 specification.

3.3.1 BAA Authentication and Verified KYC/KYB Claims request

Figure 3 BAA Authentication and Verified KYC/KYB Claims request

Document name: D3.1 BAA Development report Page: 37 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The flow in the above sequence diagram (Figure 3) is described in detail below:

1) User authentication request is received at the BAA DCC from the DC with identity-token and
userinfo claims request.

Implementation Note

The authentication request should be in a JWT Token as opposed to a Request format: see OIDC standard section
6.

2) The DCC stores the user-info claims in a session variable, and proceeds to generate an SP
Request message based on the received identity-token claims and also captures the SP
Metadata. The DCC proceeds to forward the SP Request to the ACM microservice to handle
the request of these identity claims on behalf of the DC.

3) Analysis of the Identity-token claims request in the ACM determines that the attributes being
requested are for eIDAS (requested trust_framework indicates e.g. “eidas_ial_substantial” or
if not specified the requested claims are resolved to eIDAS), and the ACM routes these to the
IdP Connecter microservice that handles eIDAS authentication (based on configuration data).
If the trust framework or claims are not recognised an error response is returned.

4) This results in redirecting the user to the eIDAS network to perform authentication at their
national IdP, and the user’s authenticated attributes are returned to the IdP Connector in the
BAA, based on the call-back address previously provided by the IdP Connector.

5) The IdP Connector next returns the Data Source response to the ACM in an attributeSet object.
6) The ACM returns the response to the DCC module, which is handling the request on behalf of

the DC, and proceeds to generate an authorisation code for the session and returns it to the
DC Relying Party.

7) The DC queries the DCC token endpoint on the BAA, with the authorisation code and client
secret for the retrieval of the identity-token and access token. The DCC generates:

a. an identity-token from the authenticationSet stored in the session with the previously
eIDAS authenticated attributes,

b. an encrypted and signed (nested JWE5 JWS) self-describing access token, based on the
userinfo claims that were previously stored for the session (in the initial authentication
request). The claims included in the token are the eIDAS claims, with the identity of
the authenticated user, as well as the requested KYC/KYB Claims including IDA trust
framework.

The DC can now close the session as the access token will now hold all the information for it
to process the subsequent userinfo request from the DCC.

8) The DC receives both the Identity-token and access token. This is considered in the next section
3.3.2.

5 In the initial development just a JWT Access Token will be generated for test and debug, and then it will be
added later the signing and encryption with nested JWS/JWE.

https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

Document name: D3.1 BAA Development report Page: 38 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3.2 BAA KYC Source Distributed Claims Flow

Figure 4 BAA KYC Source Distributed Claims Flow

The flow in the above sequence diagram (Figure 4), follows on from the Authentication Flow in Figure
3, and is described in detail below:

1) After successful user authentication, and receiving the identity token and access token, the DC
next sends the access token to the userinfo endpoint on the DCC in the BAA, for the requested
verified claims, in order to receive the distributed userinfo endpoints and associated access
tokens.

Implementation Note

GRIDS extends the IDA spec trust framework to optionally include the DP KYC Source userinfo endpoint in the
userinfo request from the DC to the BAA. This is made possible, as the GRIDS BAA includes in its BAA OP
Metadata a catalogue of all available DP KYC Services (their verified claims and associated trust frameworks), of
the GRIDS network. The DC will be able to read the BAA OP Metadata at any time. The DC could also request the
same verified claims to be requested from multiple DP KYC Sources.

In the case that the DC does not provide the DP KYC Source in the userinfo request, the ACM will match the
request against all DP KYC/KYB sources that are seen to be available.

The non-normative example below for the userinfo request received from the Data Consumer includes a
distributed KYC/KYB source “userinfo_endpoint” as given in the example below:

Document name: D3.1 BAA Development report Page: 39 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

{

 "userinfo":{

 "verified_claims":{

 "verification": {

 "trust_framework": null,

 "userinfo_endpoint": "www.entiyid.com"

 },

 "claims":{

 "given_name":null,

 "family_name":null,

 "birthdate":null

 }

 }

 }

}

2) The DCC decrypts and forwards the userinfo request to the ACM, which then determines the

DP KYC/KYB Source endpoints to query that match the verified KYC request and are available
in the GRIDS network. The distributed DP KYC Source userinfo endpoints are obtained either
from:

a. the userinfo request itself with KYC/KYB Sources given by "userinfo_endpoint" or
b. matching the request against all KYC/KYB Sources to return all possible options, so that

the DC will decide which DP source(s) to use

The ACM proceeds to generate the distributed Access tokens including the following:

a. The previously verified identity claims obtained from the userinfo so that the DPs will
have assured eIDAS identity claims on the subject being queried.

b. The verified claims with trust framework to be queried from this DP KYC Source.
c. A DC Client Introspection Point URI

a. This enables the DP to query the Data Consumer client Id and so to obtain the
DCCs JSON Web Key Set which will specify how the DP should return the
requested KYC/KYB Claims to the client e.g. signed and/or encrypted.

d. Finally, the ACM generates and signs the associated self-describing access tokens (with
verified identity claims) for each of the IDA queries in the userinfo request. Any
previously specified userinfo endpoints in the original userinfo request are removed.

Implementation Note

An example of an unencoded userinfo access token to be sent to a DP KYC Source for distributed verified claims
is given below. Refer to this link.

{

"iss":"https://BAA.1.example.com",

"sub":"X731Z219A",

"aud":"https://DP.anotherexample.com",

"scope":"openid",

"exp":"1311281970",

"iat":"1311280970",

"jti":"knm34l45jl45l",

"txn": "12347565411142194650508795011123",

"client_id":"https://DC.example.com",

"client_introspection_uri":"https://GRIDS.BAA1234.com/clients?id=https://DC

.example.com",

http://www.entiyid.com/
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest

Document name: D3.1 BAA Development report Page: 40 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

"client_introspection_access_token":"78y98yy98hyubui989y898y98yh8h8y7",

"legal_person_identifier": "375714X",

"legal_name": "Acme Corporation",

"verified_claims": {

 "verification": {

 "trust_framework":"eidas",

 "identity_assurance_level": "substantial",

 "time": "2012-04-22T11:30Z"

 },

 "claims": {

 "given_name": "John",

 "family_name": "Smith",

 "birthdate": "1971-04-17",

 "person_identifier": "X731Z219A",

 "address": {

 "country": null,

 "street_address": "George Street 123",

 "locality": "Glasgow",

 "postal_code": "G1 1QD"

 }

 }

 },

"claims": {

 "userinfo": {

 "verified_claims": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "organisation": {

 "essential": false,

 "purpose": "string"

 },

 "country": {

 "essential": true,

 "purpose": "string",

 "value": "ES"

 }

 },

 "time": {

 "max_age": 0,

 "essential": true,

 "purpose": "string"

 },

 "data": {

 "essential": true,

 "purpose": "string"

 },

 "extractURL": {

 "essential": true,

 "purpose": "string"

 },

 "document": {

 "SKU": {

 "value": "REX"

 "essential": false,

 "purpose": "string"

Document name: D3.1 BAA Development report Page: 41 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 },

 "option": {

 "essential": false,

 "purpose": "string"

 }

 }

 }

]

 },

 "claims": {

 "given_name": null,

 "family_name": null,

 "birthdate": null,verification

 "legal_name": null,

 "legal_person_identifier": null,

 "lei": null,

 "vat_registration": null,

 "address": null,

 "tax_reference": null,

 "sic": null,

 "business_role": null,

 "sub_jurisdiction": null,

 "trading_status": null

 }

 }

 }

}

}

3) The Data Consumer receives the userinfo response in a JWT containing the distributed access

tokens and DP userinfo endpoint from the BAA. An example of the userinfo response received
from the BAA with the distributed claims is given in section 3.2.4.2.

4) The Data Consumer proceeds to request for the KYC information and sends a GET with the
received access token to the specified DP KYC Source userinfo endpoint.

Implementation Note

An example of the userinfo request is given below:

GET /userinfo HTTP/1.1

Host: https://DP.anotherexample.com

Authorization: Bearer ksj3n283dkey889yhhiuafb76cdefhuk455445jk45jkk45

5) The DP receives the request and decodes the self-describing token. It the processes the KYC

request as follows:
a. Identifies the subject eIDAS identity claims and any other identity claims provided.
b. Processes the requested verified claims based on given identity information.
c. If it is able to provide the KYC/KYB Claims requested, it verifies the received charging

details are correct.
d. The BAA Client introspection point is queried and returns the DCs JWK URI which the

DP then queries to obtain the DCs JWKS.
e. The DP prepares the token response as per the DCs JWKS either, plain, signed and/or

encrypted.

Document name: D3.1 BAA Development report Page: 42 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

6) The requested verified KYC and identity claims are returned to the Data Consumer in line with
the DCs JWKS.

7) The client is charged as per the charging info provided in the KYC request to the DPs userinfo
endpoint.

8) Finally, the DP captures the transaction with the DCC, in an event token that is sent to the BAA
Event endpoint. This will indicate success or fail, and the verified KYC/KYB Claims requested
with a hash of the subject identifier.

If the DC resultantly needs to make a new changed KYC/KYB Claim request it will repeat the above flow
from step 1, but with the identity token previously issued to the RP by the BAA included and the new
userinfo claims being requested and with any new identity claims provided and also with the “prompt”
parameter set to “none”. So that if the session is still available the user does not need to be prompted
to login again by the BAA, however it is important that the DC does ensure to get the user authorisation
for requesting new claims.

3.4 BAA Component Diagram

The following component diagram (Figure 5) shows the BAA implementation and interfaces supported
in this release.

Figure 5 BAA Component Diagram

Document name: D3.1 BAA Development report Page: 43 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.5 Data Model

The OIDC IDA 1.0 specification specifies certain KYC trust framework and claims and is captured in this
section. The claims specific to GRIDS

3.5.1 OIDC IDA 1.0

3.5.1.1 Predefined identifier values

Identifiers for various element types used in the verified data representation of OpenID Connect 4
Identity Assurance are specified here.

3.5.1.2 Verified Claims

A JSON is specified for the OIDC IDA verified claims response here.

3.5.1.3 Verified Claims Request

A JSON is specified for the OIDC IDA verified claims request here.

3.5.2 GRIDS

3.5.2.1 GRIDS Identity Assurance Claims

GRIDS has specified a specific IDA trust framework for the Data Provider being piloted and is captured
below.

"verified_claims": {

 "verification": {

 "trust_framework": {

 "value": "grids_kyb"

 },

 "evidence": [

 {

 "type": {

 "value": "company_register"

 },

 "registry": {

 "organisation": {

 "essential": false,

 "purpose": "string"

 },

 "country": {

 "essential": true,

 "purpose": "string",

 "value": "ES"

 }

 },

 "time": {

 "max_age": 0,

 "essential": true,

https://bitbucket.org/openid/ekyc-ida/wiki/identifiers
https://openid.net/schemas/verified_claims-10.json
https://openid.net/schemas/verified_claims_request-11.json

Document name: D3.1 BAA Development report Page: 44 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "purpose": "string"

 },

 "data": {

 "essential": true,

 "purpose": "string"

 },

 "extractURL": {

 "essential": true,

 "purpose": "string"

 },

 "document": {

 "SKU": {

 "value": "REX"

 "essential": false,

 "purpose": "string"

 },

 "option": {

 "essential": false,

 "purpose": "string"

 }

 }

 }

]

The values for country are specified according to ISO 3166 country codes.

The values of the SKU are as follows:

• "REX",

• "AA",

• "AOA",

• "SL"

Potentially, any KYC/KYB claims can be supported over GRIDS as long as the Data Consumer and Data
Provider are able to consume and process them. However, a default list should be advertised by the
GRIDS Operator towards the Data Consumers that want to connect to GRIDS.

For example, the default KYC/KYB claims handled by GRIDS could be as given below and these should
be declared and definition referenced by the GRIDS Operator so that all Data Consumers are able to
process them in a standardized format supported over GRIDS.

• "legal_name",

• "legal_person_identifier",

• "lei",

• "vat_registration",

• "address",

Document name: D3.1 BAA Development report Page: 45 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

• "sic",

• "business_role",

• "sub_jurisdiction",

• "trading_status",

• "family_name",

• "given_name",

• "birthdate",

• "person_identifier"

3.6 Internal interfaces

The internal interfaces between BAA microservices are specified in the Open API yaml specification in
Annex 7.10.

3.7 Security Guidelines

High level security guidelines for the implementation of GRIDS are as outlined below.

Security Guidelines:

1. All external interfaces should support https to prevent man in the middle attacks.
2. All communications between the client Data Consumer and BAA OIDC Provider should follow

the authorisation code flow with standard security guidelines as indicated in the OIDC Core
specification [6].

3. Id Tokens issued by the BAA are signed by the BAA and the signature is validated by the clien
DCs.

4. Self-describing Access tokens issued by the BAA, to be consumed by the BAAs own end
userinfo point are at signed and encrypted and decrypted with its own private key and
validated upon its consumption by its own private signing key.

5. Self-describing Access tokens issued by the BAA, to be consumed by external Data Provider
userinfo endpoints are both signed by the BAA OP and encrypted with the public encryption
key of the Data Provider.

6. Communication from the Data Provider to the client Data Consumer with the response of the
distributed userinfo request will be according to the client’s publication of support for signed
and encrypted userinfo responses.

Implementation Note 3.3.1.A

Useful references are given below:

Building an access token reference is found here.

FAPI Cert binding in the Access token with the DC thumbprint CERT reference s found here.

Use the same DC cert in mutual TLS authentication to the token end point on the BAA authorisation server as with the DC
mutual TLS authentication on the DP Infouser endpoint, and DP checks the cert is the same so authenticating the DC is the
same as was issued with the access token. Useful references are found here, here, here and here.

https://www.oauth.com/oauth2-servers/access-tokens/self-encoded-access-tokens/
https://darutk.medium.com/oauth-access-token-implementation-30c2e8b90ff0
https://darutk.medium.com/financial-grade-api-fapi-explained-by-an-implementer-d09fcf2ff932
https://gitlab.com/ID4me/documentation/blob/master/id4ME%20Technical%20Specification.adoc
https://difi.github.io/felleslosninger/maskinporten_protocol_token.html
https://developers.amadeus.com/self-service/apis-docs/guides/authorization-262

Document name: D3.1 BAA Development report Page: 46 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.8 Microservices chassis framework

It would be advantageous to update the ESMO Microservices architecture [17] to an Open Source
Microservices chassis framework, such as Spring Cloud, so to make use of the OS community tools
available for improved service discovery and load balancing mechanisms.

However, this is not possible to implement in this project and is recommended as a future action.

Document name: D3.1 BAA Development report Page: 47 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4 Development Modules, Process and Tools

This section aims to outline the development process and tools used in the project for the modules
that were developed.

4.1 BAA Microservice modules

The partners agreed to develop the Task 3.1 modules as per the table below (Table 2).

BAA
Modules

Microservice Development Partner

SM Lifted from ESMO - No dev UAEGEAN

CM
Lifted from SEAL with GRIDS specific development for
managing BAA & DP OP metadata

Atos

ACM

Handles requests from DCC with redirection to eIDAS
and handles KYC/KYB request for verified claims with
DPs in GRIDS trust network before preparing
distributed claims access tokens

Atos

DCC
Connector to Data Consumer OIDC Authorisation
Server

UAEGEAN

DC
Tester

Provide a dummy test DC container to test the whole
flow

UAEGEAN

IdPC

Lifted from SEAL base for OIDC interwork towards
eIDAS proxy with GRIDS specific interwork and events
added

ADACOM

DPC

Provides Introspection endpoint on the BAA to the
DPs for DC metadata queries and provides a n access
token for the distributed userinfo to the DPs

InfoCert

ELK
Deployed & configured Elastic Search and Kibana so
to support monitoring of events on the BAA

Kompany

Table 2 BAA microservice module development

4.2 Development tools

The GRIDS development process supported by Atos consists of the following tools:

• GitLab (v11.6.3)

• Nexus (v3.29.2-02)

• SonarQube (v8.2)

• GRIDS VM (Ubuntu 20.04.1) where the BAA node will be deployed.

Domain name: example-xyz.eu

Every partner who signed the related ATOS form should access those without problems, by means of
the user Id & password provided by ATOS.

Only CI practices are described in this document by the moment. CD practices like the automation of
the docker-compose deployments, will be considered in the future

Document name: D3.1 BAA Development report Page: 48 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4.3 Development process

This document sets the guidelines for the CI/CD flow during the development of the GRIDS project.

The aim of our CI/CD approach is to allow the GRIDS partner design teams to work together more
efficiently to quickly and automatically test, package, and deploy the GRIDS software modules.

For that, the following GitLab Group (Figure 6) has been created: partners are adding with the related
permissions to store code, build CI pipelines, etc.

Figure 6: GRIDS GitLab Group

Note the repository CI playground in the GRIDS group is used as a sample of how to use the GRIDS CI
framework.

General documentation on GitLab can be found at [10].

4.3.1 Contribution Guidelines

A sample of general information on pull requests, code conventions, commit conventions, language
etc. is specified in the GRIDS Repo.

4.3.2 Basic steps

Next steps should be followed after creating a new repository:

Select the License

The CI playground project uses EUPL 1.2.

README file

LET’S WRITE IT before starting to upload any code!

Use of Headers

Every source file must have a header. This is an example for Atos code:

/**

Copyright © 2021 Atos Spain SA. All rights reserved.

Document name: D3.1 BAA Development report Page: 49 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

This file is part of GRIDS Configuration Manager (GRIDS CM).

GRIDS CM is free software: you can redistribute it and/or modify it under the terms of EUPL
1.2.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT ANY WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT,

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

See README file for the full disclaimer information and LICENSE file for full license
information in the project root.

@author Atos Research and Innovation, Atos SPAIN SA

<Short description of the class>

*/

4.3.3 Java package naming

 “eu.grids.xxxxx”.

Document name: D3.1 BAA Development report Page: 50 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4.4 CI Flow

4.4.1 GitLab Project

When a new project is created, add the project members first (from Setting Members), and then
specify the settings for branches (from Settings Repository). For each repository, the default branch
(see Figure 7 below) represents the “base” branch in that repository. All the pull requests and code
commits are automatically made on it, unless you specify a different branch.

Figure 7: Set the default branch

You can specify how, and which branches are protected (from Settings Repository). In this way, certain
branches cannot be deleted, or pushed, according to the specified roles.

The objective is the master branches of all the GRIDS projects to be aligned. For that, the most
restrictive rule is to be added to the master in each repository. For the development branches (default
branch), minor restriction; other branches created, the less restrictive.

Document name: D3.1 BAA Development report Page: 51 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

In the CI playground project, the default branch is “development”, and the protected branches are
“master” and “development”, with different restrictive rules, as we can see in the next figure:

Figure 8: Set the protected branches

From the Settings General menu, Permissions and Merge options can be expanded in order to adjust
those settings.

Two important functionalities are to be used along the development of the project: Issues and Merge
Requests.

Figure 9: Approving a merge request

Document name: D3.1 BAA Development report Page: 52 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Finally, it is interesting to access the Graph of the project, to see its status in relation to the branches
and merges done:

Figure 10: Repository Graph

4.4.2 Continuous Integration

The file where the CI/CD is defined is the .gitlab-ci.yml file at the root of your repository. The runners
are the software agents in charge of executing the jobs specified in that file.

When any commit (or any action you have considered in the file) happens in your repository, the
runner executes the jobs detailed in that file. A set of jobs is called pipeline.

(Refer to [11] for more information.)

Our goal is to have available a .gitlab-ci.yml file per repository to scan the code with SonarQube, build
and push images to the Nexus. The runners can be installed whatever machine you want, but if you
prefer to run in the GRIDS VM, ATOS team will install and register them for you.

4.4.2.1 GitLab Runners

The gitlab runner installed for the CI playground project was created and registered in this way:

docker pull gitlab/gitlab-runner:v11.7.0

docker volume create gitlab-runner-config

docker run -d --name gitlab-runner --restart always \

 -v /var/run/docker.sock:/var/run/docker.sock \

 -v gitlab-runner-config:/etc/gitlab-runner \

 gitlab/gitlab-runner:v11.7.0

docker exec -it gitlab-runner gitlab-runner register --docker-privileged

Document name: D3.1 BAA Development report Page: 53 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

You can see from Settings CI/CD, in the Runners section in Figure 11 below.

Figure 11: GitLab runner for the CI playground repository

See more information in reference [12].

4.4.3 The .gitlab-ci.yml file

If you read the .gitlab-ci.yml file of the CI playground repository, several variables are used. Such
variables have to be defined previously from Settings CI/CD in the Variables section in Figure 12 below.

Figure 12: CI playground CI/CD variables

Some of those variables are used along the specification of the pipeline of the sample project. In our
case, we have defined several jobs to be executed (or not) depending on the branch we are working.

Document name: D3.1 BAA Development report Page: 54 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

It is highly recommended to use the lint utility to validate the syntax of your .gitlab-ci.yml. It can be
found at CI/CD Pipelines in Figure 13 below.

Figure 13: CI Lint utility

4.4.3.1 Status

To check the status of your project CI, check the pipeline status as shown in Figure 13.

By clicking on a giving pipeline, you can get more detailed information, and the jobs taking part in that
pipeline. Access the jobs logs selecting the job you want to analyse as in Figure 14 below.

Figure 14: CI status

Document name: D3.1 BAA Development report Page: 55 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4.4.4 Nexus registry

The container images generated are to be stored in a Nexus registry as depicted in Figure 15 below.

You have to sign in with the user/password provided by Atos.

Figure 15: CI playground images stored in Nexus

The CLI URL to be used and in this way, you would make:

docker login registry.host.xyz:18460

docker build -t registry.host.xyz:18460/ari/grids/your-repo .

docker push registry.host.xyz:18460/ari/grids/your-repo:0.1

sudo docker pull registry.host.xyz:18460/ari/grids/your-repo:latest

Note: Please be aware of the two different URLs, the web and the CLI.

A CI playground example is given on how to automate the uploading to Nexus. The jobs build_image
and build_master_image show the commands used:

• Note the use of environment variables previously defined in our project like NEXUS_CLI_HOST
or NEXUS_CLI_REPO. (See please at Figure 12: CI playground CI/CD variables.)

• Other variables belong to GitLab: CI_COMMIT_REF_SLUG and others will allow to tag the
image.

Document name: D3.1 BAA Development report Page: 56 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4.4.5 SonarQube

To gain access to the tool sign in with your GitLab user/password provided by ATOS, where a list of
projects is displayed.

Firstly, you have to add/create a new project in order to specify the language of your code. A
SonarQube token will be generated, necessary when analysing the codeThe commands to scanner
the code are provided at the end of the creation also. Such commands are the ones to be added to
your .gitlab-ci.yaml file. You can try them in a manual way before automating.

For the CI playground repository:

mvn sonar:sonar \

 -Dsonar.projectKey=eu.url.hello \

 -Dsonar.host.url=https://host.xyz \

 -Dsonar.login=the_token

You can see, for example, the Sonar analysis performed for the CI Playground project as depicted in
Figure 16 below.

Figure 16: Sonar analysis for CI playground project

In the file yml file can see how to automate the SonarQube analysis. The job “codequality” is in charge
of executing the SonarQube scanner:

Document name: D3.1 BAA Development report Page: 57 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

• Some environment variables are used (SONAR_HOST_URL and SONAR_HOST_TOKEN). (See
please at Figure 12: CI playground CI/CD variables.)

• Note the qualitygate option (true/false): it is the way to say the pipeline to stop or not if the
scanner fails (the result is below the quality gate specifications).

Find more information at [13].

4.5 Deployment

We are going to use docker-compose utility to deploy GRIDS microservice in our development VM.

GRIDS partners shall provide a docker-compose installation in order to be included in the GRIDS
deployment. They will be able to access the VM in order to see the ms deployed, the containers and
the images, and read the logs generated by such ms if they want. The deployment will be done by
ATOS team.

The docker-compose file used for deploying the CI playground service is available on the GRIDS repo.

Document name: D3.1 BAA Development report Page: 58 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions

The report first recaps the high-level design as applicable to the implementation of the Business
Attribute Aggregator before fully specifying its low-level design.

It is seen that the BAA has aligned with the OIDC IDA specification and has been active in its WG so to
include GRIDS use case requirements in the next release of the specification.

The design process and tools used by the partners’ in developing the BAA microservice modules is also
captured.

Document name: D3.1 BAA Development report Page: 59 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

6 References

[1] ESMO Project, D2.1 Cross-border mechanisms and Technical Design for the effective use of eID
DSI

[2] Websites: Elasticsearch, Logstash , Kibana OSS Event Monitoring https://www.elastic.co/elastic-
stack , retrieved 2020-09-24

[3] Websites: https://www.javainuse.com/spring/springboot-microservice-elk , retrieved 2020-09-
24

[4] Websites: https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html , retrieved
2020-10-19

[5] Websites: https://openid.net/specs/openid-connect-discovery-1_0.html, retrieved 2020-10-19

[6] Websites: https://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration,
retrieved 2020-10-19

[7] Websites, https://openid.net/specs/openid-connect-core-1_0.html, retrieved 2020-10-19

[8] Websites, https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html, retrieved
2020-10-19

[9] Websites, https://tools.ietf.org/html/rfc7662, retrieved 2020-10-19

[10] Websites, GitLab Docs, GitLab Docs, https://docs.gitlab.com/ee/README.html#new-to-git-and-
gitlab. retrieved 2021-02-11

[11] Websites, GitLab Docs, Get started with GitLab CI/CD, https://docs.gitlab.com/ee/ci/quick_start/,
retrieved 2021-02-11

[12] Websites, GitLab Docs, Install GitLab Runner, https://docs.gitlab.com/runner/install/. retrieved
2021-02-12

[13] Websites, SonarQube Docs, Overview, https://docs.sonarqube.org/latest/analysis/overview/,
retrieved 2021-02-11

[14] GRIDS Project, D2.1 Business Services and Technical Architecture report

[15] Websites, RFC6749 The OAuth 2.0 Authorization Framework,
https://datatracker.ietf.org/doc/html/rfc6749, retrieved 2021-05-19

[16] Websites, OIDC Discovery 1.0, https://openid.net/specs/openid-connect-discovery-
1_0.html#ProviderConfig.

[17] Websites, EC ESMO Project Git Hub Repo, https://github.com/ec-esmo

[18] Websites, https://ldapwiki.com/wiki/OAuth%202.0%20Client%20Registration, retrieved 2021-
05-31

https://www.elastic.co/elastic-stack
https://www.elastic.co/elastic-stack
https://www.javainuse.com/spring/springboot-microservice-elk
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://tools.ietf.org/html/rfc7662
https://docs.gitlab.com/ee/README.html#new-to-git-and-gitlab
https://docs.gitlab.com/ee/README.html#new-to-git-and-gitlab
https://docs.gitlab.com/ee/ci/quick_start/
https://docs.gitlab.com/runner/install/
https://docs.sonarqube.org/latest/analysis/overview/
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig
https://github.com/ec-esmo
https://ldapwiki.com/wiki/OAuth%202.0%20Client%20Registration

Document name: D3.1 BAA Development report Page: 60 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

[19] Websites, https://www.keycloak.org/docs/7.0/securing_apps/, retrieved 2021-05-31

https://www.keycloak.org/docs/7.0/securing_apps/

Document name: D3.1 BAA Development report Page: 61 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

7 Annexes

7.1 Local BAA Metadata (CM)

This is a non-normative example of the BAA metadata dynamically configured on the CM module to
include the local BAA metadata and verified claims available over the local DP nodes and their last
successful refresh time.

This is made available to the ACM for internal BAA metadata query and also other trusted BAA nodes
that query the BAA.

baaIDAmetadata_lo

cal v0.2.json

7.2 External BAA Metadata (CM)

This is a non-normative example of how all external BAAs and their supported DP metadata are queried
on the CM by the ACM for external BAA metadata.

baaIDAmetadata_ex

ternal v0.2.json

The CM populates this file by querying each BAA Metadata endpoint populated in the trusted BAA list.

7.3 Trusted BAA List (CM)

This is a list of trusted BAA nodes the administrator has approved and configured as trusted BAA nodes
in GRIDS.

GRIDS BAA

endpoints list.json

7.4 Trusted DP List (CM)

This is a list of Data Providers that the BAA administrator has approved and configured as trusted KYC
Sources of verified credentials.

DP OIDC

Configuration endpoints list .json

This is used by the CM to query locally supported Data Providers OIDC Configuration Metadata.

Document name: D3.1 BAA Development report Page: 62 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

7.5 EIDAS Metadata (CM)

This is a non-normative example of an EIDAS metadata json file configured by the CM, and queried by
the ACM for EIDAS metadata.

GRIDS IDPmetadata

v02.json

7.6 GRIDS Metadata (CM)

Includes the verified claims supported by the BAA over the whole GRIDS Network and to be added to
the BAA OP Metadata well-known configuration by the DCC. This is queried by the DCC for GRIDS
metadata.

GRIDSmetadata

v0.8.json

7.7 Basic BAA Metadata (DCC)

This is a non-normative example of the basic well-known OP Metadata configured on the DCC module.

GRIDS basic BAA

metadata json example.json

7.8 BAA OP Metadata well-known configuration (DCC)

This is the well-known OIDC configuration publicly available and used by all Data Consumers and Data
Providers in the GRIDS ecosystem. This is generated by the DCC module.

GRIDS BAA OIDC

configuration endpoint example v0.5.json

7.9 DP OIDC IDA Metadata (DP)

This is a non-normative example of the well-known OP Metadata provided by the Data Providers.

DPOIDCmetadata

v2.json

7.10 BAA YAML

The OPEN API 3 specification of all BAA APIs between its internal microservices are specified in the
yaml included below.

Document name: D3.1 BAA Development report Page: 63 of 63

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

GRIDS

openapi3.yml

7.11 eIDAS Natural and Legal Claims

The natural and legal person claims supported in respective eIDAS natural persons and legal persons
requests are specified in the file included below.

eIDAS.json

7.12 JWKS

A non-normative example of a JWKS is given below.

jwks.json

